

$$
\frac{(\frac{1}{2}x-1)+(\frac{3}{4}x+1)}{y}=\frac{dy}{dx}=0
$$

Let
\n
$$
M(x,y)=2x-1
$$
 3, these are
\n $M(x,y)=3y+7$ 3, therefore
\n $W(x,y)=3y+7$

$$
M(x,y)=2x-1
$$

\nLet
\n
$$
M(x,y)=2x-1
$$

\n<

And
$$
\frac{\partial M}{\partial y} = 0 = \frac{\partial N}{\partial x}
$$
.
\nThus the equation is exact.
\nThus the equation is exact.
\n $W = \text{need} \frac{1}{x} \sin(\frac{x}{y}) \text{ where}$
\n $\frac{\partial f}{\partial x} = M(x, y)$ and $\frac{\partial f}{\partial y} = N(x, y)$
\n $\frac{\partial f}{\partial x} = 2x - 1$ or $\frac{\partial f}{\partial y} = 3y + 7$

Integrate (D with respect to x to get

\n
$$
f(x,y) = x^{2} - x + g(y)
$$
\nwhere $g(y)$ is constant with respect to x.

\nNow different to y to get:

\n
$$
\frac{\partial f}{\partial y} = g'(y)
$$
\n
$$
y \sin y = g'(y)
$$
\n
$$
3y + 7 = g'(y)
$$
\n
$$
3y + 7 = g'(y)
$$
\n
$$
3y^{2} + 7y = g(y)
$$
\nThus,

\n
$$
f(x,y) = x^{2} - x + g(y) = x^{2} - x + \frac{3y^{2}}{2} + 7y
$$
\n
$$
f(x,y) = x^{2} - x + g(y) = x^{2} - x + \frac{3y^{2}}{2} + 7y
$$
\nThus,

\n
$$
f(x,y) = x^{2} - x + g(y) = x^{2} - x + \frac{3y^{2}}{2} + 7y
$$
\n
$$
x^{2} - x + \frac{3y^{2}}{2} + 7y = c
$$
\nwhere c is a constant.

⑮

$$
\frac{1}{10}
$$
\n
$$
\frac{5x+4y}{M} + (4x-8y^{3})y' = 0
$$

Let
\n
$$
M(x,y) = 5x+4y
$$

\n $N(x,y) = 4x-8y^{3}$
\n(2019
\n201
\n201
\n201
\n201
\n201
\n202
\n203
\n204
\n205
\n206
\n206
\n207
\n208
\n209
\n201
\n201
\n202
\n203
\n204
\n205
\n206
\n207
\n208
\n209
\n201
\n201
\n201
\n201
\n201
\n201
\n201
\n202
\n201
\n201
\n202
\n203
\n204
\n205
\n206
\n207
\n208
\n209
\n201
\n201
\n201
\n201
\n201
\n202
\n203
\n204
\n205
\n206
\n207
\n208
\n209
\n209
\n201
\n201
\n201
\n201
\n201
\n202
\n203
\n204
\n205
\n209
\n209
\n201
\n201
\n201
\n201
\n201
\n202
\n203
\n204
\n205
\n209
\n209
\n201
\n201
\n201
\n201
\n202
\n203
\n204
\n205
\n205
\n206
\n207
\n208
\n209
\n209
\n209
\n209
\n209
\n209
\n201
\n201
\n201
\n201
\n201
\n202
\n209
\

Then,
\n
$$
\frac{\partial M}{\partial x} = 5
$$
, $\frac{\partial M}{\partial y} = 4$
\n $\frac{\partial M}{\partial x} = 4$, $\frac{\partial N}{\partial y} = -24y^2$ (uniformly
\nany = 4, $\frac{\partial N}{\partial y} = -24y^2$

We have that
\n
$$
\frac{\partial M}{\partial y} = 4 = \frac{\partial N}{\partial x}
$$
\n
$$
S_{0} + h e \quad ODE \text{ is exact.}
$$
\nWe want to find $f(x,y)$ where
\n
$$
\frac{\partial f}{\partial x} = M(x,y)
$$
\n
$$
\frac{\partial f}{\partial y} = N(x,y)
$$

So we need to solve
\n
$$
\frac{\partial f}{\partial x} = 5 \times f \times 9
$$
\n
$$
\frac{\partial f}{\partial y} = 4 \times -8y^{3}
$$
\n
$$
\frac{\partial f}{\partial y} = 4 \times -8y^{3}
$$
\n
$$
f(x,y) = 5x^{2} + 4y x + 9(y)
$$
\nwhere 9 is constant with respect to x.
\nDifferentiate this equation with respect to x.
\n
$$
\frac{\partial f}{\partial y} = 4 \times +9'(y)
$$
\n
$$
\frac{\partial f}{\partial y} = 4 \times +9'(y)
$$
\n
$$
9e^{t}
$$
\n
$$
\frac{\partial f}{\partial y} = 4 \times +9'(y)
$$
\n
$$
9e^{t}
$$
\n
$$
\frac{\partial f}{\partial y} = 4 \times -8y^{3}
$$
\n
$$
\frac{\partial f}{\partial y} = 4 \times -8y^{3}
$$

Thus, g'(y) ⁼ - Sy3

So,

$$
g(y) = -\frac{8y^{4}}{4} = -2y^{4}
$$

Thus,
\n
$$
f(x,y) = \frac{5}{2}x^{2} + 4yx + g(y)
$$

\n
$$
= \frac{5}{2}x^{2} + 4yx - 2y^{4}
$$
\nSo an infinite, solution to the equation
\n $50e^{-ix}given by the equation\n
$$
\frac{5}{2}x^{2} + 4yx - 2y^{4} = C
$$
\nwhere c is any constant.$

$$
\underbrace{\fbox{O(c)}}_{N} - (x + 6y) y' + (2x + y) = 0
$$

Let
\n
$$
M(x,y) = 2x+y
$$

\n $N(x,y) = -x-6y$
\n $N(x,y) = -x-6y$

$$
\frac{1}{2} \left(\frac{x}{y}\right)^{12} - x - 69
$$
\nThen,

\n
$$
\frac{\partial M}{\partial x} = 2, \frac{\partial M}{\partial y} = 1
$$
\n
$$
\frac{\partial M}{\partial x} = -1, \frac{\partial N}{\partial y} = -6
$$
\nor baryon the result.

We have that
\n
$$
\frac{\partial M}{\partial y} = 1
$$
 $\int_{e^{\alpha y}M}^{ne^{\alpha}} e^{\alpha y} dV$
\n $\frac{\partial N}{\partial x} = -1$ $\int_{e^{\alpha y}M}^{ne^{\alpha}} e^{\alpha y} dV$
\nThus, the equation is $\frac{n e^{\alpha}}{2}$ exact.

$$
\frac{17}{10}
$$
\n
$$
\frac{2x}{y} - \frac{x^{2}}{y^{2}} \cdot \frac{dy}{dx} = 0
$$
\n
$$
\frac{17}{10}
$$
\n
$$
\frac{y}{y} - \frac{x^{2}}{y^{2}} \cdot \frac{dy}{dx} = 0
$$
\n
$$
\frac{17}{10}
$$
\n
$$
\frac{y}{y} - \frac{x^{2}}{y^{2}} = 2xy^{-1}
$$
\n
$$
\frac{17}{10}
$$
\n
$$
\frac{17}{100}
$$
\n
$$
\
$$

Then
\n
$$
\frac{\partial M}{\partial x} = 2y^{-1}, \frac{\partial M}{\partial y} = -2xy^{-2}
$$

\n $\frac{\partial M}{\partial x} = -2xy^{-2}, \frac{\partial N}{\partial y} = 2x^{2}y^{-3}$
\n(on this
\n $\frac{\partial M}{\partial x} = 0$
\nwhere $y = 0$

Note that
\n
$$
\frac{\partial M}{\partial y} = -2xy^{-2} = \frac{\partial N}{\partial x}
$$
 $\int \frac{e^{4y}u}{y+0} dx$

Thus the equation is exact.
The solution will end up existing
where
$$
y \ne 0
$$
 because of the above
continuity notes.
We want to find f where

$$
\frac{\partial f}{\partial x} = M(x,y)
$$
\n
$$
\frac{\partial f}{\partial y} = N(x,y)
$$
\n
$$
\frac{\partial f}{\partial y} = N(x,y)
$$
\n
$$
\frac{\partial f}{\partial x} = 2xy^{-1}
$$
\n
$$
\frac{\partial f}{\partial y} = -x^{2}y^{-1}
$$
\n
$$
\frac{\partial f}{\partial y} = -x^{2}y^{-1}
$$
\n
$$
\frac{\partial f}{\partial y} = -x^{2}y^{-1} + h(y)
$$
\nwhere $h(y)$ is constant with respect to x.
\nDifferentiate with respect to y to get
\n
$$
\frac{\partial f}{\partial y} = -x^{2}y^{-2} + h'(y)
$$
\n
$$
S_{\epsilon+1}
$$
\n
$$
S_{\epsilon+2}
$$
\n
$$
S_{\epsilon+3}
$$
\n
$$
S_{\epsilon+4}
$$
\n
$$
S_{\epsilon+5}
$$
\n
$$
S_{\epsilon+6}
$$
\n
$$
S_{\epsilon+7}
$$
\n
$$
S_{
$$

Then,
\n
$$
f(x,y) = x^{2}y^{2} + h(y) = x^{2}y^{2}
$$

\nSo, a solution by the ODE
\nis given by
\n $\frac{x^{2}}{y} = c$
\nwhere c is any constant.

$$
\underbrace{O(e)}_{M} = \underbrace{(2y^{2}x-3)+(2yx^{2}+4)}_{N}y'=0
$$

Let
\n
$$
M(x,y)=2y^{2}x^{-3}\int_{e^{y}dx}^{x+y}e^{y}dy
$$

Then
\n
$$
\frac{\partial M}{\partial x} = 2y^2
$$

\n $\frac{\partial M}{\partial x} = 4y^2$
\n $\frac{\partial N}{\partial y} = 2x^2$
\n $\frac{\partial N}{\partial y} = 2x^2$
\n(10.1)100J
\n(20.1)10J
\n(20.1)10J
\n(20.1)2J
\n(20.1)2J
\n(20.1)3J
\n(20.1)3J
\n(20.1)4J
\n(20.1)3J
\n(20.1)4J
\n(20.1)4J
\n(20.1)3J
\n(20.1)4J
\n(

And,
\n
$$
\frac{\partial M}{\partial y} = 4yx = \frac{\partial N}{\partial x}
$$

\nSo, the ODE is exact.
\nWe must find f where
\n $\frac{\partial f}{\partial x} = 2y^{2}x - 3$ [0]
\n $\frac{\partial f}{\partial x} = 2yx^{2}+9$ [2]

Integrate ① with respect to x h get

\n
$$
f(x,y) = y^{2}x^{2} - 3x + h(y)
$$
\nwhere h(y) is constant with respect to x.

\n
$$
Diffexchate with respect to y to get
$$
\n
$$
\frac{\partial f}{\partial y} = 2yx^{2} + h'(y)
$$
\n
$$
f(t) = \frac{\partial f}{\partial y} = 2yx^{2} + h'(y)
$$
\n
$$
f(t) = \frac{\partial f}{\partial y} = 2yx^{2} + h'(y)
$$
\n
$$
2yx^{2} + h'(y) = \frac{\partial f}{\partial y} = 2yx^{2} + h'(y)
$$

Thus,

$$
h'(y) = 4
$$

where hy) in constant with
$$
cos(\theta)
$$

\nDifferentiate with $cos(\theta)$ to get
\n
$$
\frac{\partial f}{\partial y} = 2y \times^2 + h'(y)
$$
\n
$$
f(t) = 2y \times^2 + h'(y) = \frac{\partial f}{\partial y} = 2y \times^2 + 4
$$
\nThus,
\n
$$
h'(y) = 4
$$
\n
$$
h'(y) = 4
$$
\nSo,
\n
$$
h(y) = 4y
$$
\n
$$
h(y) = 4y
$$
\n
$$
f(x,y) = \frac{y^2 \times^2 - 3x + h(y) = y^2 \times^2 - 3x + 4y}{h(y) = 6}
$$
\nSo,
$$
h(y) = 4y
$$
\n
$$
g'(x, y) = \frac{y^2 \times^2 - 3x + h(y) = y^2 \times^2 - 3x + 4y}{h(y) = 6}
$$
\n
$$
g'(x, y) = \frac{y^2 \times^2 - 3x + h(y)}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y) + h(y)} = \frac{y^2 \times^2 - 3x + 4y}{h(y)
$$

⑪ Consider $\frac{D(f)}{D(f)}$ Consider
(2y- $\frac{1}{2}$ + (os(3x)) $+ cos(3x) \frac{dy}{dx} + \frac{y}{x^2} - 4x^3 + 3ysin(3x)$ $\frac{y}{x^{2}} - y^{3} + 3y sin(3x)$

M

(3x) l everywhen $= 0$ $\overline{\mathcal{M}}$ N Continuous

 $x = 0$

Let $M(x,y) = y^2 - 4x^3 + 3y \sin(3x)$ everywhere $M(x,y) = y^2 - 4x^3 + 3y \sin(3x)$ except $N(x,y) = 2y - x$ $\begin{array}{ccc} -1 & \text{c.} \\ -1 & \text{c.} \\ \end{array}$

Then,
\n
$$
\frac{\partial M}{\partial x} = -2y\overline{x}^{2} - 12x^{2} + 9y cos(3x)
$$
\n
$$
\frac{\partial M}{\partial x} = -2y\overline{x}^{2} + 3sin(3x)
$$
\n
$$
\frac{\partial M}{\partial y} = x^{-2} - 3sin(3x)
$$
\n
$$
\frac{\partial M}{\partial x} = x^{-2} - 3sin(3x)
$$
\n
$$
\frac{\partial M}{\partial y} = 2
$$
\n
$$
\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x} = 0
$$
\n
$$
\frac{\partial M}{\partial y} = 0
$$
\n
$$
\frac{\partial M}{\partial y} = 0
$$
\n
$$
\frac{\partial M}{\partial y} = 0
$$

points when $sin(3x) = 0$. Thus the eqvation is not exact.

2(a) From problem 0 above we saw
\nthat a solution by
\n
$$
(2x-1)+(3y+7)\frac{dy}{dx}=0
$$

\nis given by the equation
\n $x^2-x+3y^2+7y=c$
\nWe want the solution to satisfy $y(1)=2$.
\nWe want the solution to satisfy $y(1)=2$.
\n $y^2-x+3y^2+7y=c$
\nh get
\n $2+y+3(2)^2+7(2)=c$
\nSo,
\n $20=c$
\nThus, a solution to the initial value
\n $y^2-x+\frac{3}{2}y^2+7y=20$.

$$
4 - x
$$

\n $9e^{2} + 3(2)^{2} + 7(2) = C$
\n $2 + 3(2) + 7(2) = C$

So,
\n
$$
20=C
$$

\nThus, a solution to the initial value
\n $P(0)$ been is given by
\n $\chi^{2}-x+\frac{3}{2}y^{2}+4y=20$.

$$
(2)(b) We are given that the equation\n
$$
(e^{x}+y) + (2+x+ye^{x})y' = 0
$$
\n
\n
$$
15 \text{ exact.}
$$
\n
\n
$$
\frac{2M}{dy} = 1
$$
\n
$$
\frac{2M}{dy} = 1
$$
\n
$$
e^{x} \text{ exact.}
$$
\n
$$
\frac{2M}{dy} = 1
$$
\n
$$
e^{x} \text{ exact.}
$$
\n
$$
\frac{2M}{dy} = 1
$$
\n
$$
e^{x} \text{ exact.}
$$
\n
$$
\frac{2M}{dy} = 1
$$
\n
$$
e^{x} \text{ exact.}
$$
\n
$$
\frac{2M}{dy} = 1
$$
\n
$$
e^{x} \text{ exact.}
$$
\n
$$
\frac{2M}{dy} = 1
$$
\n
$$
\frac{2M}{dy} = M
$$
\n
$$
\frac{2M
$$
$$

$$
\frac{\partial f}{\partial y} = x + h'(y)
$$

Set this equal to (2) to get

$$
x + h'(y) = \frac{\partial f}{\partial y} = 2 + x + y e^{y}
$$

Thus,

$$
h'(y) = 2 + ye^{y}
$$

$$
y(y) = 2y + 2ye^{y}dy
$$

\n
$$
y(y) = 2y + 2ye^{y}dy
$$

\n
$$
y(y) = 2y + 2ye^{y}dy
$$

\n
$$
y = 2y + 2ye^{y}dy
$$

\n
$$
y = e^{y}dy
$$

Thus,
\n
$$
f(x,y) = e^{x}+yx+h(y)
$$

\n $= e^{x}+yx+2y+ye^{y}-e^{y}$
\n $= e^{x}+yx+2y+ye^{y}-e^{y}$
\nSo, an implicit solution h the ODE
\nis given by the equation

$$
e^{x}+yx+2y+ye^{y}-e^{y}=c
$$
\nwhere c is any constant.
\nWe want the solution when $y(s)=1$.
\n
$$
y(e^{-x}) = 0, y=1
$$
 into the above
\n
$$
e^{x}+y=0, y=1
$$
 into the above
\n
$$
e^{x}+y=0, y=1
$$
 into the above
\n
$$
e^{x}+y=0, y=1
$$

$$
(2)(c) We are given that the equation\n
$$
\left(\frac{3y^{2}-x^{2}}{y^{5}}\right) \frac{dy}{dx} + \frac{x}{2y^{4}} = 0
$$
\n
$$
\frac{1}{\sqrt{1 - \frac{y^{2}}{2}}x^{2}-\frac{y^{3}}{2y^{4}}}{\sqrt{1 - \frac{y^{2}}{2}}x^{3}-\frac{y^{2}}{2y^{5}}}{\sqrt{1 - \frac{y^{2}}{2}}x^{2}-2xy^{5}}
$$
\n
$$
\frac{1}{\sqrt{1 - \frac{y^{2}}{2}}x^{3}-x^{2}y^{5}-\frac{y^{2}}{2x^{5}}}{\sqrt{1 - \frac{y^{2}}{2}}x^{2}-2xy^{5}}
$$
\n
$$
\frac{1}{\sqrt{1 - \frac{y^{2}}{2}}x^{2}-2xy^{5}} = -2xy^{5}
$$
\n
$$
\frac{1}{\sqrt{1 - \frac{y^{2}}{2}}x^{2}-1}{\sqrt{1 - \frac{y^{2}}{2}}x^{2}-1}
$$
\n
$$
\frac{1}{\sqrt{1 - \frac{y^{2}}{2}}x^{2}-1}{\sqrt{1 - \frac{y^{2}}{2}}x^{2}-1}
$$
$$

$$
\frac{Check}{M=\frac{1}{2}xy^{4}} = \frac{3M}{3y} = -2xy^{5}
$$
\n
$$
N = 3y^{3} - x^{2}y^{5} + \frac{3N}{3x} = -2xy^{5}
$$
\n
$$
N = 3y^{3} - x^{2}y^{5} + \frac{3N}{3x} = -2xy^{5}
$$

$$
We want f where
\n $\frac{\partial f}{\partial x} = \frac{1}{2}xy^{-q}$
\n $\frac{\partial f}{\partial y} = 3y^{-3}x^{2}y^{-5}$
\n $\frac{\partial f}{\partial y} = 3y^{3}x^{2}y^{-5}$
\n $\frac{\partial f}{\partial y} = 0$
$$

2)(c) We are give
 $\frac{33^{2}-x^{2}}{y^{5}}$ dy + $\frac{x}{2y}$
 $\frac{1}{\sqrt{y^{5}}}$ dy + $\frac{x}{2y}$
 $\frac{1}{\sqrt{y^{5}}}$ dy + $\frac{x}{2y}$
 $\frac{1}{\sqrt{y^{5}}}$ dy + $\frac{x}{2y}$
 $\frac{1}{\sqrt{y^{5}}}$
 $\frac{1}{\sqrt{y^{5}}}$ dy + $\frac{x}{2y}$
 $\frac{1}{\sqrt{y^{5}}}$
 $\frac{1}{\sqrt{y$ Integrate \bigcirc with respect to \times to get $f(x,y) = \frac{1}{4}x^{2}y^{4} + h(y)$ where h(y) is constant with respect to x. Now differentiate the above with respect

16
$$
y
$$
 to get

\n
$$
\frac{3f}{9y} = -x^{2}y^{5} + h'(y)
$$
\n18.14

\n19.14

\n19.14

\n19.14

\n10.14

\n11.14

\n11.14

\n12.14

\n13.14

\n14.14

\n15.14

\n16.14

\n17.14

\n18.14

\n19.14

\n10.14

\n11.14

\n12.14

\n13.14

\n14.14

\n15.14

\n16.14

\n17.14

\n18.14

\n19.14

\n19.14

\n11.14

\n11.14

\n12.14

\n13.14

\n14.14

\n15.14

\n16.14

\n17.14

\n18.14

\n19.14

\n11.14

\n11.14

\n12.14

\n13.14

\n14.14

\n15.14

\n16.14

\n17.14

\n18.14

\n19.14

\n11.14

\n11.14

\n12.14

\n13.14

\n14.14

\n15.14

\n16.14

\n17.14

\n18.14

\n19.14

\n11.14

\n11.14

\n12.14

\n13.14

\n14.14

\n15.14

\n16.14

\n17.14

\n18.14

\n

Thus,
\n
$$
h(y) = 3\overline{y}^3
$$

\nSo,
\n $h(y) = \frac{3}{-2}y^{-2} = -\frac{3}{2}y^{-2}$

Thus,
\n
$$
F(x,y) = \frac{1}{4}x^{2}y^{4} + h(y)
$$
\n
$$
= \frac{1}{4}x^{2}y^{4} - \frac{3}{2}y^{2}
$$
\n
$$
= \frac{1}{4}x^{2}y^{4} - \frac{3}{2}y^{2}
$$
\nSo a so (which is given by the ODE is given by
\n
$$
\int_{\frac{1}{4}x} x^{2}y^{4} - \frac{3}{2}y^{2} = C
$$
\n
$$
\int_{\frac{1}{4}x} x^{2}y^{4} - \frac{3}{2}y^{2} = C
$$
\nWe want the solution when $y(1) = 1$.

So, plug
$$
x=1, y=1
$$
 into the above equation to get
\n
$$
\frac{1}{4}(1)^{z}(1)^{-1} - \frac{3}{z}(1)^{-2} = C
$$

Thus,
\n
$$
C = \frac{1}{4} - \frac{3}{2} = -\frac{5}{4}
$$

\nSo a solution to the infial value
\n $\frac{5}{4} \times \frac{2}{9} - \frac{4}{2} = \frac{3}{4} \times \frac{2}{9} = -\frac{5}{4}$
\n $\frac{1}{4} \times \frac{2}{9} - \frac{3}{2} = -\frac{5}{4}$